Diversidad y función de las Micorrizas Arbusculares en un agroecosistema sostenible del humedal Abras de Mantequilla
DOI:
https://doi.org/10.59169/pentaciencias.v6i4.1114Palabras clave:
fertilidad; sostenible; análisis; diversidad; especies; abundanciaResumen
El humedal Abras de Mantequilla, ubicado en Ecuador es considerado como sitio RAMSAR por su extrema importancia para los ecosistemas acuáticos y terrestres, este lugar enfrenta desafíos debido a actividades humanas como la extracción de agua, la deforestación y la explotación pesquera. Existe una necesidad apremiante de proteger este humedal no solo para mantener su biodiversidad, sino también por sus funciones esenciales, como la retención y purificación del agua. El presente estudio se centró en la fertilidad del suelo, particularmente en relación con los hongos micorrízicos arbusculares (HMA), en el bosque secundario "Noé Morán" dentro del humedal Abras de Mantequilla. Se destacó el papel clave de los HMA en la mejora de la fertilidad del suelo. Los métodos utilizados incluyeron muestreo de suelo e identificación de especies de HMA, así como análisis de propiedades físicas y químicas del suelo. Se recolectaron muestras de suelo de la zona de raíces de cuatro especies arbóreas (Castilla elástica, Albizia saman, Erythrina poeppigiana y Duguetia peruviana) y se llevaron al laboratorio para su análisis. Los resultados mostraron diferencias en las propiedades fisicoquímicas del suelo entre las especies forestales estudiadas, así como variaciones en la abundancia y diversidad de especies de HMA asociadas con cada especie arbórea. Se enfatizó la importancia de comprender estas interacciones suelo-planta-microorganismo para promover prácticas agrícolas sostenibles en el humedal Abras de Mantequilla.
Descargas
Citas
Álvarez-Mieles, G., Irvine, K., Griensven, A. V., Arias-Hidalgo, M., Torres, A., & Mynett, A. E. (2013). Relationships between aquatic biotic communities and water quality in a tropical river-wetland system (Ecuador). Environmental Science and Policy, 34 (december): 115–127.
Balieiro, F. D. C., Franco, A. A., Fontes, R. L. F., Dias, L. E., Campello, E. F. C., & Faria, S. M. D. (2007). Evaluation of the throughfall and stemflow nutrient contents in mixed and pure plantations of Acacia mangium, Pseudosamenea guachapele and Eucalyptus grandis. Revista Árvore, 31, 339-346.
Bennett, A. E., & Classen, A. T. (2020). Climate change influences mycorrhizal fungal–plant interactions, but conclusions are limited by geographical study bias. Ecology, 101(4), e02978.
Blair, B. C., & Perfecto, I. (2004). Successional status and root foraging for phosphorus in seven tropical tree species. Canadian journal of forest research, 34(5), 1128-1135.
Blaszkowski J (2012) Glomeromycota. W. Szafer Institute of Botany, Polish Academy of Sciences. Kraków
Boavida, M. J. (1999). Wetlands: Most relevant structural and functional aspects. Limnetica, 17, 57–63.
Cardoso, I. M., & Kuyper, T. W. (2006). Mycorrhizas and tropical soil fertility. Agriculture, Ecosystems & Environment, 116(1-2): 72-84.
Carteron, A., Vellend, M., & Laliberte, E. (2022). Mycorrhizal dominance reduces local tree species diversity across US forests. Nature Ecology & Evolution, 6(4), 370-374.
Epihov, D. Z., Saltonstall, K., Batterman, S. A., Hedin, L. O., Hall, J. S., van Breugel, M., ... & Beerling, D. J. (2021). Legume–microbiome interactions unlock mineral nutrients in regrowing tropical forests. Proceedings of the National Academy of Sciences, 118(11), e2022241118.
Faghihinia, M., Zou, Y., Chen, Z., Bai, Y., Li, W., Marrs, R., & Staddon, P. L. (2020). Environmental drivers of grazing effects on arbuscular mycorrhizal fungi in grasslands. Applied Soil Ecology, 153, 103591.
Finlay, R. D. (2008). Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. Journal of Experimental Botany, 59(5): 1115-1126.
Gerdemann J, Nicolson T (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological society 46(2):235-244. https://doi.org/10.1016/S0007-1536(63)80079-0
Guzmán-González, S., & Farías-Larios, J. (2005). Biología y regulación molecular de la micorriza arbuscular. Avances en investigación agropecuaria, 9(2), 17-31.
Hartmann, M., & Six, J. (2023). Soil structure and microbiome functions in agroecosystems. Nature Reviews Earth & Environment, 4(1), 4-18.
Huey, C. J., Gopinath, S. C., Uda, M. N. A., Zulhaimi, H. I., Jaafar, M. N., Kasim, F. H., & Yaakub, A. R. W. (2020). Mycorrhiza: a natural resource assists plant growth under varied soil conditions. 3 Biotech, 10, 1-9.
Islam, M., Al-Hashimi, A., Ayshasiddeka, M., Ali, H., & El Enshasy, H. (2022). Prevalence of mycorrhizae in host plants and rhizosphere soil: A biodiversity aspect. Plos One, 17 (3).
Janowski, D., & Leski, T. (2022). Factors in the distribution of mycorrhizal and soil fungi. Diversity, 14(12), 1122.
Jerbi, M., Labidi, S., Lounes-Hadj Sahraoui, A., Chaar, H., & Ben Jeddi, F. (2020). Higher temperatures and lower annual rainfall do not restrict, directly or indirectly, the mycorrhizal colonization of barley (Hordeum vulgare L.) under rainfed conditions. PloS one, 15(11), e0241794.
Kupka, D., & Gruba, P. (2022). Effect of pH on the sorption of dissolved organic carbon derived from six tree species in forest soils. Ecological Indicators, 140, 108975.
Lambers, H., Wright, I. J., Guilherme Pereira, C., Bellingham, P. J., Bentley, L. P., Boonman, A., ... & Xu, Y. (2021). Leaf manganese concentrations as a tool to assess belowground plant functioning in phosphorus-impoverished environments. Plant and soil, 461, 43-61.
Liu, M., Shen, Y., Li, Q., Xiao, W., & Song, X. (2021). Arbuscular mycorrhizal fungal colonization and soil pH induced by nitrogen and phosphorus additions affects leaf C: N: P stoichiometry in Chinese fir (Cunninghamia lanceolata) forests. Plant and Soil, 461, 421-440.
Ma, X., Geng, Q., Zhang, H., Bian, C., Chen, H. Y., Jiang, D., & Xu, X. (2021). Global negative effects of nutrient enrichment on arbuscular mycorrhizal fungi, plant diversity and ecosystem multifunctionality. New Phytologist, 229(5), 2957-2969.
MAE. 2013. Sistema de clasificación de los ecosistemas del Ecuador continental. Subsecretaría de Patrimonio Natural, Ministerio del Ambiente del Ecuador, Quito.
Painii Montero, V. F., Santillán Muñoz, O. B., & Cuásquer Fuel, J. E. . (2022). Los impactos ecológicos productivos por actividades agrícolas en el humedal Abras de Mantequilla, Ecuador. Investigación, Tecnología E Innovación, 14(16), 16–28.
Quevedo, O. (2008). Ficha Ramsar del Humedal Abras de Mantequilla - Ecuador 2008. Guayaquil, Ecuador. Retrieved from http://suia.ambiente.gob.ec
Qiu, L., Bi, Y., jiang, B., Wang, Z., Zhang, Y., & Zhakypbek., Y. (2019). Arbuscular mycorrhizal fungi ameliorate the chemical properties and enzyme activities of rhizosphere soil in reclaimed mining subsidence in northwestern China. Journal of Arid Land, 11: 135-147.
R Core Team (2015) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
Redecker D, Schüßler A, Stockinger H, Stürmer S, Morton J, Walker C (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23(7):515-531. https://doi.org/10.1007/s00572-013-0486-y
Rillig, M. C. (2004). Arbuscular mycorrhizae, glomalin, and soil aggregation. Canadian Journal of Soil Science, 84(4).
Rożek, K., Rola, K., Błaszkowski, J., Leski, T., & Zubek, S. (2020). How do monocultures of fourteen forest tree species affect arbuscular mycorrhizal fungi abundance and species richness and composition in soil. Forest ecology and management, 465, 118091.
Singavarapu, B., Beugnon, R., Bruelheide, H., Cesarz, S., Du, J., Eisenhauer, N., ... & Wubet, T. (2022). Tree mycorrhizal type and tree diversity shape the forest soil microbiota. Environmental Microbiology, 24(9), 4236-4255.
Singh, D., Sillu, D., Kumar, A., & Agnihotri, S. (2021). Dual nanozyme characteristics of iron oxide nanoparticles alleviate salinity stress and promote the growth of an agroforestry tree, Eucalyptus tereticornis Sm. Environmental Science: Nano, 8(5), 1308-1325.
Solís-Rodríguez, U. R., Ramos-Zapata, J. A., Ramos-Zapata, J. A., Hernández-Cuevas, L., & Salinas-Peba, L. (2020). Arbuscular mycorrhizal fungi diversity and distribution in tropical low flooding forest in Mexico. Mycol Progress, 19:195–204.
Tedersoo, L., Bahram, M., & Zobel, M. (2020). How mycorrhizal associations drive plant population and community biology. Science, 367(6480), eaba1223.
Teixeira P, Donagemma G, Fontana A, Teixeira W (2017) Manual de métodos de análise de solo. Embrapa Solos, Brasília
Ullah, A., Gao, D., & Wu, F. (2024). Common mycorrhizal network: the predominant socialist and capitalist responses of possible plant–plant and plant–microbe interactions for sustainable agriculture. Frontiers in Microbiology, 15, 1183024.
Usman, M., Ho-Plágaro, T., Frank, H., Calvo-Polanco, M., Gaillard, I., Garcia, K., & Zimmermann, D. (2021). Mycorrhizal Symbiosis for Better Adaptation of Trees to Abiotic Stress Caused by Climate Change in Temperate and Boreal Forests. Frontiers in Forests and Global Change.
Vieira, L. C., Silva, D. K., Escobar, I. E., Silva, J. M., Moura, I. A., Oehl, F., & Silva, G. A. (2020). Changes in an Arbuscular Mycorrhizal Fungi Community Along an Environmental Gradient. Plants, 9(1): 52.
Wang, J., Wang, G. G., Zhang, B., Yuan, Z., & Fu, Z. (2019). Arbuscular Mycorrhizal Fungi Associated with Tree Species in a Planted Forest of Eastern China. Forests, 10(5): 424.
Waring, B. G., Gei, M. G., Rosenthal, L., & Powers, J. S. (2016). Plant–microbe interactions along a gradient of soil fertility in tropical dry forest. Journal of Tropical Ecology, 32(4), 314-323.
Zhang, J., Quan, C., Ma, L., Chu, G., Liu, Z., & Tang, X. (2021). Plant community and soil properties drive arbuscular mycorrhizal fungal diversity: A case study in tropical forests. Soil Ecology Letters, 3, 52-62.
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Revista Científica Arbitrada Multidisciplinaria PENTACIENCIAS
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.