Aplicaciones de la Inteligencia Artificial en la educación para la promoción de hábitos de vida saludable: una revisión de alcance
DOI:
https://doi.org/10.59169/pentaciencias.v8i1.1719Palabras clave:
Inteligencia artificial; Educación en salud; Hábitos de vida saludable; Aprendizaje Automático; Promoción de la saludResumen
Esta revisión de alcance analiza la literatura publicada en 2024 sobre las aplicaciones de la inteligencia artificial (IA) en entornos educativos para promover hábitos de vida saludable. Se consultaron las bases de datos PubMed y SciELO, identificándose 142 registros, de los cuales 14 estudios cumplieron con los criterios de inclusión. Las intervenciones documentadas abarcan actividad física, salud mental, nutrición, salud oral y prevención de enfermedades crónicas. Entre los hallazgos más relevantes destacan el uso de algoritmos de aprendizaje automático y aprendizaje por refuerzo para personalizar metas de ejercicio, la implementación de sistemas de monitoreo de salud estudiantil a través de aplicaciones móviles, la detección temprana de síntomas de depresión y ansiedad en estudiantes universitarios, y el análisis de contenido en redes sociales para reforzar mensajes de prevención de cáncer. En conjunto, la evidencia demuestra que la IA ofrece herramientas efectivas y escalables para fortalecer la educación en salud, facilitar la toma de decisiones preventivas y fomentar comportamientos saludables. No obstante, se identifican desafíos éticos, tecnológicos y de equidad que requieren marcos normativos y capacitación docente para garantizar un uso seguro, inclusivo y sostenible.
Descargas
Citas
Ahiakwo, R. O. (2021). Role of Artificial Intelligence (AI) in promoting Healthy Eating Habits among Students through Food Tracking Apps. https://www.iiardjournals.org/get/WJIMT/VOL.%209%20NO.%204%202025/Role%20of%20Artificial%20Intelligence%2049-61.pdf
Alam, F., Lim, M. A., & Zulkipli, I. N. (2023). Integrating AI in medical education: Embracing ethical usage and critical understanding. Frontiers in Medicine, 10. https://doi.org/10.3389/fmed.2023.1279707
Arrubla-Hoyos, W., Carrascal-Porras, F., Gómez, J., Arrubla-Hoyos, W., Carrascal-Porras, F., & Gómez, J. (2024). Cardiovascular Risk Prediction through Machine Learning: A Comparative Analysis of Techniques. Ingeniería y Competitividad, 26(1). https://doi.org/10.25100/iyc.v26i1.13229
Ayoub, A., Amin, R., & Wani, Z. A. (2023). Exploring the impact of altmetrics in relation to citation count and SCImago Journal Rank (SJR). Journal of Scientometric Research, 12(3), 603-608.
Chau, R. C.-W., Thu, K. M., Hsung, R. T.-C., McGrath, C., & Lam, W. Y.-H. (2024). Self-monitoring of Oral Health Using Smartphone Selfie Powered by Artificial Intelligence: Implications for Preventive Dentistry. Oral Health & Preventive Dentistry, 22, 327-340. https://doi.org/10.3290/j.ohpd.b5758200
Chew, H. S. J., Chew, N. W., Loong, S. S. E., Lim, S. L., Tam, W. S. W., Chin, Y. H., Chao, A. M., Dimitriadis, G. K., Gao, Y., & So, J. B. Y. (2024). Effectiveness of an artificial intelligence-assisted app for improving eating behaviors: Mixed methods evaluation. Journal of medical Internet research, 26, e46036.
Chowdhury, A. H., Rad, D., & Rahman, Md. S. (2024). Predicting anxiety, depression, and insomnia among Bangladeshi university students using tree‐based machine learning models. Health Science Reports, 7(4), e2037. https://doi.org/10.1002/hsr2.2037
Churruca, K., Ludlow, K., Wu, W., Gibbons, K., Nguyen, H. M., Ellis, L. A., & Braithwaite, J. (2021). A scoping review of Q-methodology in healthcare research. BMC Medical Research Methodology, 21(1), 125. https://doi.org/10.1186/s12874-021-01309-7
Cuff, P. A., & Forstag, E. H. (Eds.) (with Global Forum on Innovation in Health Professional Education, Board on Global Health, Health and Medicine Division, & National Academies of Sciences, Engineering, and Medicine). (2023). Artificial Intelligence in Health Professions Education: Proceedings of a Workshop. National Academies Press. https://doi.org/10.17226/27174
Dergaa, I., Saad, H. B., El Omri, A., Glenn, J. M., Clark, C. C. T., Washif, J. A., Guelmami, N., Hammouda, O., Al-Horani, R. A., Reynoso-Sánchez, L. F., Romdhani, M., Paineiras-Domingos, L. L., Vancini, R. L., Taheri, M., Mataruna-Dos-Santos, L. J., Trabelsi, K., Chtourou, H., Zghibi, M., Eken, Ö., … Chamari, K. (2024). Using artificial intelligence for exercise prescription in personalised health promotion: A critical evaluation of OpenAI’s GPT-4 model. Biology of Sport, 41(2), 221-241. https://doi.org/10.5114/biolsport.2024.133661
Díaz-Guio, D. A., Henao, J., Pantoja, A., Arango, M. A., Díaz-Gómez, A. S., Gómez, A. C., Díaz-Guio, D. A., Henao, J., Pantoja, A., Arango, M. A., Díaz-Gómez, A. S., & Gómez, A. C. (2024). Artificial intelligence, applications and challenges in simulation-based education. Colombian Journal of Anestesiology, 52(1). https://doi.org/10.5554/22562087.e1085
Dove, A., Wang, J., Huang, H., Dunk, M. M., Sakakibara, S., Guitart-Masip, M., Papenberg, G., & Xu, W. (2024). Diabetes, Prediabetes, and Brain Aging: The Role of Healthy Lifestyle. Diabetes Care, 47(10), 1794-1802. https://doi.org/10.2337/dc24-0860
Fang, J., Lee, V. C., Ji, H., & Wang, H. (2024). Enhancing digital health services: A machine learning approach to personalized exercise goal setting. Digital Health, 10, 20552076241233247. https://doi.org/10.1177/20552076241233247
Feigerlova, E., Hani, H., & Hothersall-Davies, E. (2025). A systematic review of the impact of artificial intelligence on educational outcomes in health professions education. BMC Medical Education, 25(1), 129. https://doi.org/10.1186/s12909-025-06719-5
Gummadi, R., Dasari, N., Kumar, D. S., & Pindiprolu, S. K. S. S. (2024). Evaluating the Accuracy of Large Language Model (ChatGPT) in Providing Information on Metastatic Breast Cancer. Advanced Pharmaceutical Bulletin, 14(3), 499-503. https://doi.org/10.34172/apb.2024.060
Hammoudi Halat, D., Shami, R., Daud, A., Sami, W., Soltani, A., & Malki, A. (2024). Artificial Intelligence Readiness, Perceptions, and Educational Needs Among Dental Students: A Cross-Sectional Study. Clinical and Experimental Dental Research, 10(4), e925. https://doi.org/10.1002/cre2.925
Kang, S. J., Kim, J. O., Kim, M. J., Hur, Y.-I., Haam, J.-H., Han, K., & Kim, Y.-S. (2024). Preventive machine learning models incorporating health checkup data and hair mineral analysis for low bone mass identification. Scientific Reports, 14(1), 18792.
Kovalainen, T., Pramila-Savukoski, S., Kuivila, H.-M., Juntunen, J., Jarva, E., Rasi, M., & Mikkonen, K. (2025). Utilising artificial intelligence in developing education of health sciences higher education: An umbrella review of reviews. Nurse Education Today, 147, 106600. https://doi.org/10.1016/j.nedt.2025.106600
Novoa-Cornejo, I., Mercado-Martínez, V., Novoa-Cornejo, I., & Mercado-Martínez, V. (2024). Explorando trastornos vestibulares posconmoción cerebral: Un análisis retrospectivo utilizando enfoques de aprendizaje automático. Revista de otorrinolaringología y cirugía de cabeza y cuello, 84(3), 299-309. https://doi.org/10.4067/s0718-48162024000300142
Oyebode, O., Fowles, J., Steeves, D., & Orji, R. (2023). Machine Learning Techniques in Adaptive and Personalized Systems for Health and Wellness. International Journal of Human–Computer Interaction, 39(9), 1938-1962. https://doi.org/10.1080/10447318.2022.2089085
Pandey, A., Singh, S. P., Sharma, D., & Sonker, S. (2025). Trends and Gaps of Netiquette Research: A Scoping Review Guided by the Prisma-scr Framework. https://www.researchsquare.com/article/rs-7516371/latest
Pratama, R., Suhanda, R., Aini, Z., Nurjannah, N., & Geumpana, T. A. (2024). Application of artificial intelligence technology in monitoring students’ health: Preliminary results of Syiah Kuala Integrated Medical Monitoring (SKIMM). Narra J, 4(2), e644. https://doi.org/10.52225/narra.v4i2.644
Ramakrishnan, R., Xing, T., Chen, T., Lee, M.-H., & Gao, J. (2023). Application of AI in Nutrition. https://doi.org/10.5281/zenodo.10500601
Schaab, B. L., Calvetti, P. Ü., Hoffmann, S., Diaz, G. B., Rech, M., Cazella, S. C., Stein, A. T., Barros, H. M. T., Silva, P. C. da, & Reppold, C. T. (2024). How do machine learning models perform in the detection of depression, anxiety, and stress among undergraduate students? A systematic review. Cadernos de Saúde Pública, 40, e00029323. https://doi.org/10.1590/0102-311XEN029323
Wang, J., & Li, J. (2024). Artificial intelligence empowering public health education: Prospects and challenges. Frontiers in Public Health, 12. https://doi.org/10.3389/fpubh.2024.1389026
Zhao, K., Li, X., & Li, J. (2024). Cancer Prevention and Treatment on Chinese Social Media: Machine Learning-Based Content Analysis Study. Journal of Medical Internet Research, 26, e55937. https://doi.org/10.2196/55937
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2026 Revista Científica Arbitrada Multidisciplinaria PENTACIENCIAS

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.







