Applications of Artificial Intelligence in Education for the promotion of healthy lifestyle habits: a scoping review

Authors

DOI:

https://doi.org/10.59169/pentaciencias.v8i1.1719

Keywords:

Artificial intelligence; Health education; Healthy lifestyle habits; Machine Learning; Health promotion

Abstract

This scoping review synthesizes 2024 literature on the application of artificial intelligence (AI) in educational settings aimed at promoting healthy lifestyle habits. PubMed and SciELO searches yielded 142 records, with 14 studies meeting inclusion criteria. Reported interventions included physical activity, mental health, nutrition, oral health, and chronic disease prevention. Key findings highlight machine-learning and reinforcement-learning algorithms for personalized exercise goals, mobile-based student health monitoring systems, early detection of depression and anxiety symptoms in university populations, and social media content analysis to enhance cancer prevention messaging. Overall, evidence indicates that AI provides effective, scalable tools to strengthen health education, support preventive decision-making, and encourage healthy behaviors. Ethical, technological, and equity challenges remain, underscoring the need for clear regulatory frameworks and educator training to ensure safe, inclusive, and sustainable implementation.

Downloads

Download data is not yet available.

References

Ahiakwo, R. O. (2021). Role of Artificial Intelligence (AI) in promoting Healthy Eating Habits among Students through Food Tracking Apps. https://www.iiardjournals.org/get/WJIMT/VOL.%209%20NO.%204%202025/Role%20of%20Artificial%20Intelligence%2049-61.pdf

Alam, F., Lim, M. A., & Zulkipli, I. N. (2023). Integrating AI in medical education: Embracing ethical usage and critical understanding. Frontiers in Medicine, 10. https://doi.org/10.3389/fmed.2023.1279707

Arrubla-Hoyos, W., Carrascal-Porras, F., Gómez, J., Arrubla-Hoyos, W., Carrascal-Porras, F., & Gómez, J. (2024). Cardiovascular Risk Prediction through Machine Learning: A Comparative Analysis of Techniques. Ingeniería y Competitividad, 26(1). https://doi.org/10.25100/iyc.v26i1.13229

Ayoub, A., Amin, R., & Wani, Z. A. (2023). Exploring the impact of altmetrics in relation to citation count and SCImago Journal Rank (SJR). Journal of Scientometric Research, 12(3), 603-608.

Chau, R. C.-W., Thu, K. M., Hsung, R. T.-C., McGrath, C., & Lam, W. Y.-H. (2024). Self-monitoring of Oral Health Using Smartphone Selfie Powered by Artificial Intelligence: Implications for Preventive Dentistry. Oral Health & Preventive Dentistry, 22, 327-340. https://doi.org/10.3290/j.ohpd.b5758200

Chew, H. S. J., Chew, N. W., Loong, S. S. E., Lim, S. L., Tam, W. S. W., Chin, Y. H., Chao, A. M., Dimitriadis, G. K., Gao, Y., & So, J. B. Y. (2024). Effectiveness of an artificial intelligence-assisted app for improving eating behaviors: Mixed methods evaluation. Journal of medical Internet research, 26, e46036.

Chowdhury, A. H., Rad, D., & Rahman, Md. S. (2024). Predicting anxiety, depression, and insomnia among Bangladeshi university students using tree‐based machine learning models. Health Science Reports, 7(4), e2037. https://doi.org/10.1002/hsr2.2037

Churruca, K., Ludlow, K., Wu, W., Gibbons, K., Nguyen, H. M., Ellis, L. A., & Braithwaite, J. (2021). A scoping review of Q-methodology in healthcare research. BMC Medical Research Methodology, 21(1), 125. https://doi.org/10.1186/s12874-021-01309-7

Cuff, P. A., & Forstag, E. H. (Eds.) (with Global Forum on Innovation in Health Professional Education, Board on Global Health, Health and Medicine Division, & National Academies of Sciences, Engineering, and Medicine). (2023). Artificial Intelligence in Health Professions Education: Proceedings of a Workshop. National Academies Press. https://doi.org/10.17226/27174

Dergaa, I., Saad, H. B., El Omri, A., Glenn, J. M., Clark, C. C. T., Washif, J. A., Guelmami, N., Hammouda, O., Al-Horani, R. A., Reynoso-Sánchez, L. F., Romdhani, M., Paineiras-Domingos, L. L., Vancini, R. L., Taheri, M., Mataruna-Dos-Santos, L. J., Trabelsi, K., Chtourou, H., Zghibi, M., Eken, Ö., … Chamari, K. (2024). Using artificial intelligence for exercise prescription in personalised health promotion: A critical evaluation of OpenAI’s GPT-4 model. Biology of Sport, 41(2), 221-241. https://doi.org/10.5114/biolsport.2024.133661

Díaz-Guio, D. A., Henao, J., Pantoja, A., Arango, M. A., Díaz-Gómez, A. S., Gómez, A. C., Díaz-Guio, D. A., Henao, J., Pantoja, A., Arango, M. A., Díaz-Gómez, A. S., & Gómez, A. C. (2024). Artificial intelligence, applications and challenges in simulation-based education. Colombian Journal of Anestesiology, 52(1). https://doi.org/10.5554/22562087.e1085

Dove, A., Wang, J., Huang, H., Dunk, M. M., Sakakibara, S., Guitart-Masip, M., Papenberg, G., & Xu, W. (2024). Diabetes, Prediabetes, and Brain Aging: The Role of Healthy Lifestyle. Diabetes Care, 47(10), 1794-1802. https://doi.org/10.2337/dc24-0860

Fang, J., Lee, V. C., Ji, H., & Wang, H. (2024). Enhancing digital health services: A machine learning approach to personalized exercise goal setting. Digital Health, 10, 20552076241233247. https://doi.org/10.1177/20552076241233247

Feigerlova, E., Hani, H., & Hothersall-Davies, E. (2025). A systematic review of the impact of artificial intelligence on educational outcomes in health professions education. BMC Medical Education, 25(1), 129. https://doi.org/10.1186/s12909-025-06719-5

Gummadi, R., Dasari, N., Kumar, D. S., & Pindiprolu, S. K. S. S. (2024). Evaluating the Accuracy of Large Language Model (ChatGPT) in Providing Information on Metastatic Breast Cancer. Advanced Pharmaceutical Bulletin, 14(3), 499-503. https://doi.org/10.34172/apb.2024.060

Hammoudi Halat, D., Shami, R., Daud, A., Sami, W., Soltani, A., & Malki, A. (2024). Artificial Intelligence Readiness, Perceptions, and Educational Needs Among Dental Students: A Cross-Sectional Study. Clinical and Experimental Dental Research, 10(4), e925. https://doi.org/10.1002/cre2.925

Kang, S. J., Kim, J. O., Kim, M. J., Hur, Y.-I., Haam, J.-H., Han, K., & Kim, Y.-S. (2024). Preventive machine learning models incorporating health checkup data and hair mineral analysis for low bone mass identification. Scientific Reports, 14(1), 18792.

Kovalainen, T., Pramila-Savukoski, S., Kuivila, H.-M., Juntunen, J., Jarva, E., Rasi, M., & Mikkonen, K. (2025). Utilising artificial intelligence in developing education of health sciences higher education: An umbrella review of reviews. Nurse Education Today, 147, 106600. https://doi.org/10.1016/j.nedt.2025.106600

Novoa-Cornejo, I., Mercado-Martínez, V., Novoa-Cornejo, I., & Mercado-Martínez, V. (2024). Explorando trastornos vestibulares posconmoción cerebral: Un análisis retrospectivo utilizando enfoques de aprendizaje automático. Revista de otorrinolaringología y cirugía de cabeza y cuello, 84(3), 299-309. https://doi.org/10.4067/s0718-48162024000300142

Oyebode, O., Fowles, J., Steeves, D., & Orji, R. (2023). Machine Learning Techniques in Adaptive and Personalized Systems for Health and Wellness. International Journal of Human–Computer Interaction, 39(9), 1938-1962. https://doi.org/10.1080/10447318.2022.2089085

Pandey, A., Singh, S. P., Sharma, D., & Sonker, S. (2025). Trends and Gaps of Netiquette Research: A Scoping Review Guided by the Prisma-scr Framework. https://www.researchsquare.com/article/rs-7516371/latest

Pratama, R., Suhanda, R., Aini, Z., Nurjannah, N., & Geumpana, T. A. (2024). Application of artificial intelligence technology in monitoring students’ health: Preliminary results of Syiah Kuala Integrated Medical Monitoring (SKIMM). Narra J, 4(2), e644. https://doi.org/10.52225/narra.v4i2.644

Ramakrishnan, R., Xing, T., Chen, T., Lee, M.-H., & Gao, J. (2023). Application of AI in Nutrition. https://doi.org/10.5281/zenodo.10500601

Schaab, B. L., Calvetti, P. Ü., Hoffmann, S., Diaz, G. B., Rech, M., Cazella, S. C., Stein, A. T., Barros, H. M. T., Silva, P. C. da, & Reppold, C. T. (2024). How do machine learning models perform in the detection of depression, anxiety, and stress among undergraduate students? A systematic review. Cadernos de Saúde Pública, 40, e00029323. https://doi.org/10.1590/0102-311XEN029323

Wang, J., & Li, J. (2024). Artificial intelligence empowering public health education: Prospects and challenges. Frontiers in Public Health, 12. https://doi.org/10.3389/fpubh.2024.1389026

Zhao, K., Li, X., & Li, J. (2024). Cancer Prevention and Treatment on Chinese Social Media: Machine Learning-Based Content Analysis Study. Journal of Medical Internet Research, 26, e55937. https://doi.org/10.2196/55937

Published

2026-01-31

How to Cite

Delgado Vilela , C. M. ., Padilla Samaniego, M. V. ., & Fierro Valverde, L. G. . (2026). Applications of Artificial Intelligence in Education for the promotion of healthy lifestyle habits: a scoping review . Revista Científica Arbitrada Multidisciplinaria PENTACIENCIAS - ISSN 2806-5794., 8(1), 90–101. https://doi.org/10.59169/pentaciencias.v8i1.1719

Issue

Section

Artículos de revisión