K index and cortisol as biomarkers of body condition and physiological stress in white cachama (piaractus brachypomus)

Authors

DOI:

https://doi.org/10.59169/pentaciencias.v8i1.1731

Keywords:

Piaractus brachypomus; cortisol; Fulton’s index; animal welfare; Amazonia

Abstract

The optimisation of animal welfare in Amazonian aquaculture requires the integration of morphometric and endocrine indicators. The aim of this study was to evaluate the relationship between Fulton’s Condition Factor (K) and serum cortisol concentrations in white cachama (Piaractus brachypomus) farmed in Napo, Ecuador. Sixty-nine specimens were analysed through caudal venepuncture during the daytime period (09:00 to 12:00 h), with cortisol quantified using fluorescence immunochromatography. The results demonstrated adequate somatic development (K = 1.38 ± 0.25) alongside elevated cortisol concentrations (182.92 ± 72.04 ng/mL), with peak values observed at midday (289.97 ng/mL). Spearman’s analysis revealed no significant correlation between the two biomarkers (ρ = 0.21; p = 0.15), suggesting a functional dissociation between body condition and acute endocrine response. It is concluded that morphometric robustness does not predict the magnitude of physiological stress, and it is therefore recommended that handling and sampling be standardised to periods of lower endocrine reactivity in order to enhance welfare and physiological stability in the species.

Downloads

Download data is not yet available.

References

Aguayo-Heras, A., Rivadeneyra-Espín, V., Villamarín-Alvarez, K., & Yánez-Avalos, D. (2025). Evaluación endocrina y marcadores de estrés en cachama roja (Piaractus brachypomus): Implicaciones para el bienestar animal en acuicultura amazónica. Revista Científica Arbitrada Multidisciplinaria PENTACIENCIAS, 7(4), 327–340. https://doi.org/10.59169/pgentaciencias.v7i4.1593

Barton, B. A. (2002). Stress in fishes: A diversity of responses with particular reference to changes in circulating corticosteroids. Integrative and Comparative Biology, 42(3), 517–525. https://doi.org/10.1093/icb/42.3.517

Castillo, S. L. M., Romero, G. G. L., Castro, D. A., Lugo, E. A., & Riveros, N. (2023). Cuantificación de glucosa y cortisol como indicador de estrés en el pez Brycon amazonicus (yamú) mediante la utilización de choque térmico y anestesia. Bistua: Revista de la Facultad de Ciencias Básicas, 21(2), 9–12. https://doi.org/10.24054/bistua.v21i2.2067

Corredor-Castillo, A. S., & Landines-Parra, M. A. (2019). Respuestas fisiológicas de Piaractus brachypomus suplementado con ácido ascórbico y sometido a estrés por hipoxia. Revista de Medicina Veterinaria, (38), 1–12. https://doi.org/10.19052/mv.vol1.iss38.3

Ellis, T., Yildiz, H. Y., López-Olmeda, J. F., Spedicato, M. T., Tort, L., Overli, Ø., & Martins, C. I. M. (2012). Cortisol and fish welfare. Fish Physiology and Biochemistry, 38(1), 163–188. https://doi.org/10.1007/s10695-011-9568-y

Froese, R. (2006). Cube law, condition factor and weight–length relationships: History, meta-analysis and recommendations. Journal of Applied Ichthyology, 22(4), 241–253. https://doi.org/10.1111/j.1439-0426.2006.00805.x

Gesto, M., Hernández, J., López-Patiño, M. A., Soengas, J. L., & Míguez, J. M. (2015). Is gill cortisol concentration a good acute stress indicator in fish? A study in rainbow trout and zebrafish. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 188, 65–69. https://doi.org/10.1016/j.cbpa.2015.06.020

Guerreiro, PM, Silva, S., Louro, B., Alves, A., Couto, E. & Canário, AVM (2022). Respuesta al estrés en peces antárticos: Modulación del HPI, perfiles de cortisol, sensibilidad interrenal y expresión génica de Notothenia rossii aclimatada a desafíos de temperatura. Foro de Biología y Ciencias de la Vida, 13 (1), 58. https://doi.org/10.3390/blsf2022013058

Gonzalez Parrao, C., Shisler, S., Moratti, M., Yavuz, C., Acharya, A., Eyers, J., & Snilstveit, B. (2021). Aquaculture for improving productivity, income, nutrition and women’s empowerment in low- and middle-income countries: A systematic review and meta-analysis. Campbell Systematic Reviews, 17(4), e1195. https://doi.org/10.1002/cl2.1195

Lemos, L. S., Angarica, L. M., Hauser-Davis, R. A., & Quinete, N. (2023). Cortisol as a stress indicator in fish: Sampling methods, analytical techniques, and organic pollutant exposure assessments. International Journal of Environmental Research and Public Health, 20(13), 6237. https://doi.org/10.3390/ijerph20136237

Martínez Rodríguez, C. A., Boglino, A., Peña Messina, E., Linares-Córdova, J. F., & Ibarra Zatarain, Z. (2025). Línea de tiempo de las concentraciones plasmáticas de cortisol y glucosa en lisa (Mugil cephalus) según estilos de afrontamiento del estrés. Revista Bio Ciencias, 12, e1712. https://doi.org/10.15741/revbio.12.e1712

Mommsen, T. P., Vijayan, M. M., & Moon, T. W. (1999). Cortisol in teleosts: Dynamics, mechanisms of action, and metabolic regulation. Reviews in Fish Biology and Fisheries, 9(3), 211–268. https://doi.org/10.1023/A:1008924418720

Müller, A., Bittencourt, P., Rozas, M., & Walker, R. (2018). Manual de patología clínica de peces salmónidos. Pathovet / Universidad Austral de Chile.https://pathovet.cl/wp-content/uploads/2021/08/Manual-de-Patologi%CC%81a-Cli%CC%81nica-de-Peces-Salmo%CC%81nidos.pdf

Parra, G., Vaca, G., & Torres, A. (2024). Evaluación del estrés en peces de Latinoamérica a través de la respuesta en los niveles de cortisol. Revista Científica Ciencias Naturales y Ambientales, 18(2). https://doi.org/10.53591/cna.v18i2.1934

Sánchez-Vázquez, F. J., López-Olmeda, J. F., Vera, L. M., Migaud, H., López-Patiño, M. A., & Míguez, J. M. (2019). Environmental cycles, melatonin, and circadian control of the stress response in fish. Frontiers in Endocrinology, 10, 279. https://doi.org/10.3389/fendo.2019.00279

Uren-Webster, T. M., Rodriguez-Barreto, D., Consuegra, S., & Garcia de Leaniz, C. (2020). Cortisol-related stress signals in fish microbiome. Frontiers in Microbiology, 11, 1621. https://doi.org/10.3389/fmicb.2020.01621

Van der Oost, R., Beyer, J., & Vermeulen, N. P. E. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: A review. Environmental Toxicology and Pharmacology, 13(2), 57–149. https://doi.org/10.1016/S1382-6689(02)00126-6

Volckaert, F. A. M., Hellemans, B., Batargias, C., Canario, A. V. M., Chatziplis, D. (2012). Heritability of cortisol response to confinement stress in European sea bass (Dicentrarchus labrax). Genetics Selection Evolution, 44, 15. https://doi.org/10.1186/1297-9686-44-15

Wu, H., Ohnuki, H., Hibi, K., Ren, H., & Endo, H. (2016). Development of a label-free immunosensor system for detecting plasma cortisol levels in fish. Fish physiology and biochemistry, 42(1), 19–27. https://doi.org/10.1007/s10695-015-0113-2

Yuan, M., Fang, Q., Lu, W., Wang, X., Hao, T., Chong, C., & Chen, S. (2025). Stress in fish: Neuroendocrine and neurotransmitter responses. Fishes, 10(7), 307. https://doi.org/10.3390/fishes10070307

Published

2026-02-04

How to Cite

Abarca-Albán, J. A. ., De La Cruz-Moreno , L. G. ., Pindo-Espinoza , E. D. ., & Yánez-Avalos , D. . (2026). K index and cortisol as biomarkers of body condition and physiological stress in white cachama (piaractus brachypomus) . Revista Científica Arbitrada Multidisciplinaria PENTACIENCIAS - ISSN 2806-5794., 8(1), 124–133. https://doi.org/10.59169/pentaciencias.v8i1.1731

Issue

Section

Artículos originales