System for detection and recognition of people using drone Tello Edu
Keywords:
Machine learning; algorithm; drone; histogram; recognition; python; images.Abstract
In this research article, the training of an algorithm for user recognition and identification is developed, using an unmanned aerial vehicle with a video camera for face focusing, specifically with the Tello EDU Drone. Within the training of the algorithm in the Python software with the developer Pycharm, three instruction models FISHER, EIGEN and LBPH were used, which presented efficient results in the detection of identification patterns. The EIGEn and FISHER model have a minimum margin of error on the other hand, the LBPH model has a lower detection error, as well as a better response time of result, in the tests carried out to users, depending on the number of samples.
Downloads
References
Calatayud Ferre, R. (2022). Detección de personas para rescate marítimo. https://rua.ua.es/dspace/bitstream/10045/124653/1/Deteccion_de_personas_para_rescate_maritimo_Calatayud_Ferre_Raul.pdf
Calero, M. J. F., Jácome, D. J. R., & Escobar, D. A. S. (2015). Histograma del gradiente con múltiples orientaciones (hog-mo) detección de personas. Revista vínculos, 12(2), 138-147. http://revistas.udistrital.edu.co/ojs/index.php/vinculos/article/download/10991/11830
Croux, C., Filzmoser, P., & Joossens, K. (2005). Robust linear discriminant analysis for multiple groups: influence and classification efficiencies. Available at SSRN 876896. https://lirias.kuleuven.be/retrieve/18130
Custers, B. (2016). Future of Drone use. Springer. https://www.asser.nl/upload/documents/20161025T135125-Frontmatter%20Custers.pdf
Chamayou, G. (2016). Teoría del dron: Nuevos paradigmas de los conflictos del siglo XXI. Ned ediciones. https://www.google.com/books?hl=es&lr=&id=NOVSDAAAQBAJ&oi=fnd&pg=PT5&dq=G.+Chamayou,+Teor%C3%ADa+del+dron:+nuevos+paradigmas+de+los+conflictos+del+siglo+XXI.+Ned+ediciones,+2016.+Accedido:+6+de+noviembre+de+2022.+%5BEn+l%C3%ADnea%5D.+Disponible+en:+https://elibro.net/es/lc/espoch/titulos/59924&ots=8sLu8jlEUY&sig=XcRMWPmx8ZVkoZjmsv_O5oKRo10
Chityala, R., & Pudipeddi, S. (2020). Image processing and acquisition using Python. Chapman and Hall/CRC. https://www.taylorfrancis.com/books/mono/10.1201/9780429243370/image-processing-acquisition-using-python-ravishankar-chityala-sridevi-pudipeddi
Dietterich, T. G. (1990). Machine learning. Annual review of computer science, 4(1), 255-306. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=417f55320080fea71d491a18318dad6572b2fa8c
Espinal, E. K. (2018). HISTOGRAMA CIRCULAR 3D. Pesquimat, 15(2). https://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/download/9610/8423
Gómez, T., & Mayumi, C. (2016). Análisis comparativo de los algoritmos Fisherfaces y LBPH para el reconocimiento facial en diferentes condiciones de iluminación y pose, Tacna–2015. https://alicia.concytec.gob.pe/vufind/Record/UNJB_109808fa5dc207c12655d88db63e454b/Description
Gonzalez-Reyna, S. E., Avina-Cervantes, J. G., Ledesma-Orozco, S. E., & Cruz-Aceves, I. (2013). Eigen-gradients for traffic sign recognition. Mathematical Problems in Engineering, 2013. https://www.hindawi.com/journals/mpe/2013/364305/
Gutiérrez, J. A. T. (2017). El procesamiento de imágenes y su potencial aplicación en empresas con estrategia digital. Interfases(10), 11-29. https://dialnet.unirioja.es/descarga/articulo/6230450.pdf
Hayat, S., Yanmaz, E., & Muzaffar, R. (2016). Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint. IEEE Communications Surveys & Tutorials, 18(4), 2624-2661. http://mobile.aau.at/publications/hayat-2016-COMST-surveyUAV.pdf
Hu, Q., Ma, L., & Zhao, J. (2018). DeepGraph: A PyCharm tool for visualizing and understanding deep learning models. 2018 25th Asia-Pacific Software Engineering Conference (APSEC),
Jaume Busquets, J. (2022). Programación de un drone Tello EDU Universitat Politècnica de Catalunya]. https://upcommons.upc.edu/bitstream/handle/2117/362149/memoria.pdf?sequence=1
Jones, T. (2017). International commercial drone regulation and drone delivery services. https://picture.iczhiku.com/resource/paper/whkfUTaAzZGRFNxX.pdf
Kadiyala, A., & Kumar, A. (2018). Applications of python to evaluate the performance of bagging methods. Environmental Progress & Sustainable Energy, 37(5), 1555-1559. https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/ep.13018
Kaur, S. (2016). An automatic number plate recognition system under image processing. International Journal of Intelligent Systems and Applications, 8(3), 14. http://www.mecs-press.net/ijisa/ijisa-v8-n3/IJISA-V8-N3-2.pdf
Lee, W., Alkouz, B., Shahzaad, B., & Bouguettaya, A. (2021). Package delivery using autonomous drones in skyways. Adjunct Proceedings of the 2021 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2021 ACM International Symposium on Wearable Computers,
Llulluna Llumiquinga, F. R. (2014). Procesamiento de imágenes mediante software libre python para el análisis metalográfico en aceros de bajo contenido de carbono QUITO, 2014.]. http://bibdigital.epn.edu.ec/bitstream/15000/7171/1/CD-5361.pdf
Maalouf, A., Gurfinkel, Y., Diker, B., Gal, O., Rus, D., & Feldman, D. (2022). Deep Learning on Home Drone: Searching for the Optimal Architecture. arXiv preprint arXiv:2209.11064. https://arxiv.org/pdf/2209.11064
Mar Cornelio, O. (2019). Modelo para la toma de decisiones sobre el control de acceso a las prácticas de laboratorios de Ingeniería de Control II en un sistema de laboratorios remoto.
Mar, O., Gulín, J., Ivan Santana Ching, & Fonseca, B. B. (2020). Remote Laboratory System for Automatic Engineering. International Journal of Wireless and Ad Hoc Communication, 1(2), 55-63.
Morcillo Martínez, L. (2018). Sistema de detección de obstáculos para drones basado en sensor láser Universitat Politècnica de València]. https://riunet.upv.es/bitstream/handle/10251/105633/MORCILLO%20-%20SISTEMA%20DE%20DETECCI%C3%93N%20DE%20OBST%C3%81CULOS%20PARA%20DRONES%20BASADO%20EN%20SENSOR%20L%C3%81SER.pdf?sequence=4
Nichols, J. A., Herbert Chan, H. W., & Baker, M. A. (2019). Machine learning: applications of artificial intelligence to imaging and diagnosis. Biophysical reviews, 11(1), 111-118. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6381354/
Reymondin, L., Paz-García, P., Tello, J. J., Coca-Castro, A., Bautista, O., & Menzinger, B. (2019). User Manual. Training Manual Terra-i. CIAT Publication. https://cgspace.cgiar.org/handle/10568/102219
Sabry, F. (2021). Robótica Autónoma:¿ Cómo aparecerá un robot autónomo en la portada de la revista Time? (Vol. 3). One Billion Knowledgeable. https://www.google.com/books?hl=es&lr=&id=uP6TEAAAQBAJ&oi=fnd&pg=PT654&dq=Detecci%C3%B3n+y+reconocimiento+de+objetos+de+veh%C3%ADculos+a%C3%A9reos+no+tripulados+mediante+la+plataforma+Raspberry+Pi%22,+Quinto+Simposio+Internacional+sobre+Estudios+Multidisciplinarios+y+Tecnolog%C3%ADas+Innovadoras&ots=V5Qr9bA1Ro&sig=w0djXbQHBU8Qrj3n8oVOEjPc_28
Saini, T. (2021). Manoeuvring drone (Tello ans Tello EDU) using body poses or gestures Universitat Politècnica de Catalunya].
Sirovich, L., & Kirby, M. (1987). Low-dimensional procedure for the characterization of human faces. Josa a, 4(3), 519-524. https://opg.optica.org/abstract.cfm?uri=josaa-4-3-519
Subash, K., Srinu, M. V., Siddhartha, M., Harsha, N. S., & Akkala, P. (2020). Object detection using Ryze Tello drone with help of mask-RCNN. 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA),
Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of cognitive neuroscience, 3(1), 71-86. https://direct.mit.edu/jocn/article-pdf/3/1/71/1932018/jocn.1991.3.1.71.pdf
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Revista Científica Arbitrada Multidisciplinaria PENTACIENCIAS - ISSN 2806-5794.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.