Salmonella spp como contaminante de la carne de pollo: una revisión

Autores/as

DOI:

https://doi.org/10.59169/pentaciencias.v5i5.596

Palabras clave:

Carne de pollo, Salmonella, contaminación, factores de virulencia, salud pública

Resumen

El objetivo de la investigación fue profundizar en los riesgos que causa la presencia de Salmonella spp, en la carne de pollo contaminada, características de su genoma, el tipo de infección que provoca, los síntomas clínicos, vías de transmisión, entre otros factores de riesgo, tanto en los animales como en el hombre. La Salmonella por su actividad en un pH óptimo de 6,7-6,8 junto a su capacidad de resistencia a sales biliares, capacidad patógena; fimbrias para su adhesión a las células del hospedero, plásmidos, islas de patogenicidad, antígenos polisacáridos O, Vi, entre otros, permiten y favorecen la replicación de la bacteria en el organismo y en alimentos, siendo un grave problema de salud pública por ser una de las principales causas de morbilidad y mortalidad en las personas en todo el mundo.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Oscar Núñez Torres, Universidad Técnica de Ambato

Ingeniero Zootecnista, PhD. en Ciencias Agropecuarias, docente de la Facultad de Ciencias Agropecuarias de la Universidad Técnica de Ambato

Michel Leiva, Universidad Técnica de Ambato

Ingeniero Agrónomo, PhD. en Ciencias Agrícolas, docente de la Facutad de Ciencias Agropecuarias de la Universidad Técnica de Ambato

Pedro Díaz Sjostrom, Clínica Veterinaria del Norte SJOVET

Médico Veterinario, Máster en Medicina preventiva veterinaria

Citas

Alikhan, N. F., Zhou, Z., Sergeant, M. J., & Achtman, M. (2018). A genomic overview of the population structure of Salmonella. In PLoS Genetics (Vol. 14, Issue 4). Public Library of Science. https://doi.org/10.1371/journal.pgen.1007261

Badie, F., Saffari, M., Moniri, R., Alani, B., Atoof, F., Khorshidi, A., & Shayestehpour, M. (2021). The combined effect of stressful factors (temperature and pH) on the expression of biofilm, stress, and virulence genes in Salmonella enterica ser. Enteritidis and Typhimurium. Archives of Microbiology, 203(7), 4475–4484. https://doi.org/10.1007/s00203-021-02435-y

Belgin Siriken. (2013). Salmonella Patojenite Adaları Salmonella Pathogenicity Islands. Mikrobiyol Bul, 47(1), 181–188. https://doi.org/10.5578/mb.4138

Besser, J. M. (2018). Salmonella epidemiology: A whirlwind of change. In Food Microbiology (Vol. 71, pp. 55–59). Academic Press. https://doi.org/10.1016/j.fm.2017.08.018

Bhutia, M. O., Thapa, N., & Tamang, J. P. (2021). Molecular Characterization of Bacteria, Detection of Enterotoxin Genes, and Screening of Antibiotic Susceptibility Patterns in Traditionally Processed Meat Products of Sikkim, India. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.599606

Biernbaum, E. N., & Kudva, I. T. (2022). AB5 Enterotoxin-Mediated Pathogenesis: Perspectives Gleaned from Shiga Toxins. Toxins, 14(1). https://doi.org/10.3390/toxins14010062

Bogomazova, A. N., Gordeeva, V. D., Krylova, E. V., Soltynskaya, I. V., Davydova, E. E., Ivanova, O. E., & Komarov, A. A. (2020). Mega-plasmid found worldwide confers multiple antimicrobial resistance in Salmonella Infantis of broiler origin in Russia. International Journal of Food Microbiology, 319. https://doi.org/10.1016/j.ijfoodmicro.2019.108497

Bumann, D., & Schothorst, J. (2017). Intracellular Salmonella metabolism. In Cellular Microbiology (Vol. 19, Issue 10). Blackwell Publishing Ltd. https://doi.org/10.1111/cmi.12766

Carey, M. E., Diaz, Z. I., Zaidi, A. K. M., & Steele, A. D. (2019). A Global Agenda for Typhoid Control - A Perspective from the Bill & Melinda Gates Foundation. Clinical Infectious Diseases, 68, S42–S45. https://doi.org/10.1093/cid/ciy928

Chattaway, M. A., Langridge, G. C., & Wain, J. (2021). Salmonella nomenclature in the genomic era: a time for change. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-86243-w

Cheng, R. A., Eade, C. R., & Wiedmann, M. (2019). Embracing diversity: Differences in virulence mechanisms, disease severity, and host adaptations contribute to the success of nontyphoidal salmonellaas a foodborne pathogen. Frontiers in Microbiology, 10(JUN). https://doi.org/10.3389/fmicb.2019.01368

Deblais, L., Helmy, Y. A., Testen, A., Vrisman, C., Jimenez Madrid, A. M., Kathayat, D., Miller, S. A., & Rajashekara, G. (2019). Specific Environmental Temperature and Relative Humidity Conditions and Grafting Affect the Persistence and Dissemination of Salmonella enterica subsp. enterica Serotype Typhimurium in Tomato Plant Tissues. https://doi.org/10.1128/AEM

Diard, M., & Hardt, W.-D. (2017). Basic Processes in Salmonella -Host Interactions: Within-Host Evolution and the Transmission of the Virulent Genotype . Microbiology Spectrum, 5(5). https://doi.org/10.1128/microbiolspec.mtbp-0012-2016

dos Santos, A. M. P., Ferrari, R. G., & Conte-Junior, C. A. (2019). Virulence Factors in Salmonella Typhimurium: The Sagacity of a Bacterium. In Current Microbiology (Vol. 76, Issue 6, pp. 762–773). Springer New York LLC. https://doi.org/10.1007/s00284-018-1510-4

Elpers, L., Deiwick, J., & Hensel, M. (2022). Effect of Environmental Temperatures on Proteome Composition of Salmonella enterica Serovar Typhimurium. Molecular and Cellular Proteomics, 21(8). https://doi.org/10.1016/j.mcpro.2022.100265

Fandos, E. G., Jesús, M., Díez, C., & Académico, C. (2014). Calidad y seguridad microbiológica de la carne de pollo: con especial referencia a la incidencia de Salmonella, Campylobacter y Listeria monocytogenes en las distintas etapas de producción y procesado. https://dialnet.unirioja.es/descarga/tesis/46794.pdf

Ferrari, R. G., Rosario, D. K. A., Cunha-Neto, A., Mano, S. B., Figueiredo, E. E. S., & Conte-Juniora, C. A. (2019). Worldwide epidemiology of Salmonella serovars in animal-based foods: A meta-analysis. Applied and Environmental Microbiology, 85(14). https://doi.org/10.1128/AEM.00591-19

Figueroa Ochoa, I. M., & Verdugo Rodríguez, A. (2005). Mecanismos moleculares de patogenicidad de Salmonella sp. Revista Latinoamericana de Microbiología, 47(1–2), 25–42.

Foley, S. L., Johnson, T. J., Ricke, S. C., Nayak, R., & Danzeisen, J. (2013). Salmonella Pathogenicity and Host Adaptation in Chicken-Associated Serovars. Microbiology and Molecular Biology Reviews, 77(4), 582–607. https://doi.org/10.1128/mmbr.00015-13

García, J. A., Paniagua, J., Pelayo, R., Isibasi, A., & Kumate, J. (1992). Factores de virulencia de Salmonella typhi en relación al desarrollo de nuevas vacunas. Salud Pública de México, 34(3), 262–267. https://www.redalyc.org/articulo.oa?id=10634304

García-Pastor, L., Puerta-Fernández, E., & Casadesús, J. (2019). Bistability and phase variation in Salmonella enterica. In Biochimica et Biophysica Acta - Gene Regulatory Mechanisms (Vol. 1862, Issue 7, pp. 752–758). Elsevier B.V. https://doi.org/10.1016/j.bbagrm.2018.01.003

Gomez-Portilla, M., Gomez, N., & Martínez-Benavides, J. (2016). Evaluación de las características organolépticas, físicas y químicas de pechuga de pollo, en San Juan de Pasto (Nariño). Veterinaria y Zootecnia, 10(2), 62–71. https://doi.org/10.17151/vetzo.2016.10.2.6

Herrera, B. Y., & Jabib, R. L. (2015). Salmonelosis, zoonosis de las aves y una patogenia muy particular. REDVET - Revista Electrónica de Veterinaria , 16(1), 1–19. http://www.veterinaria.org/revistas/redvet/n010115.html

Hume, P. J., McGhie, E. J., Hayward, R. D., & Koronakis, V. (2003). The purified Shigella IpaB and Salmonella SipB translocators share biochemical properties and membrane topology. Molecular Microbiology, 49(2), 425–439. https://doi.org/10.1046/j.1365-2958.2003.03559.x

Ishihara, K., Nakazawa, C., Nomura, S., Elahi, S., Yamashita, M., & Fujikawa, H. (2020). Effects of climatic elements on salmonella contamination in broiler chicken meat in japan. Journal of Veterinary Medical Science, 82(5), 646–652. https://doi.org/10.1292/jvms.19-0677

Jahan, F., Chinni, S. V., Samuggam, S., Reddy, L. V., Solayappan, M., & Yin, L. S. (2022). The Complex Mechanism of the Salmonella typhi Biofilm Formation That Facilitates Pathogenicity: A Review. In International Journal of Molecular Sciences (Vol. 23, Issue 12). MDPI. https://doi.org/10.3390/ijms23126462

Jiang, Y., Dennehy, C., Lawlor, P. G., Hu, Z., Yang, Q., McCarthy, G., Tan, S. P., Zhan, X., & Gardiner, G. E. (2018). Inactivation of Salmonella during dry co-digestion of food waste and pig manure. Waste Management, 82, 231–240. https://doi.org/10.1016/j.wasman.2018.10.037

Jibril, A. H., Okeke, I. N., Dalsgaard, A., Kudirkiene, E., Akinlabi, O. C., Bello, M. B., & Olsen, J. E. (2020). Prevalence and risk factors of Salmonella in commercial poultry farms in Nigeria. PLoS ONE, 15(9 September). https://doi.org/10.1371/journal.pone.0238190

Kehl, A., Noster, J., & Hensel, M. (2020). Eat in or Take out? Metabolism of Intracellular Salmonella enterica. In Trends in Microbiology (Vol. 28, Issue 8, pp. 644–654). Elsevier Ltd. https://doi.org/10.1016/j.tim.2020.03.005

Kim, S. W., Moon, K. H., Baik, H. S., Kang, H. Y., Kim, S. K., Bahk, J. D., Hur, J., & Lee, J. H. (2009). Changes of physiological and biochemical properties of Salmonella enterica serovar Typhimurium by deletion of cpxR and lon genes using allelic exchange method. Journal of Microbiological Methods, 79(3), 314–320. https://doi.org/10.1016/j.mimet.2009.09.025

Knodler, L. A., & Elfenbein, J. R. (2019). Trends in Microbiology|Microbe of the Month Salmonella enterica. https://doi.org/10.1128/microbiolspec.ARBA-0014

Lin, H. H., Chen, H. L., Weng, C. C., Janapatla, R. P., Chen, C. L., & Chiu, C. H. (2021). Activation of apoptosis by Salmonella pathogenicity island-1 effectors through both intrinsic and extrinsic pathways in Salmonella-infected macrophages. Journal of Microbiology, Immunology and Infection, 54(4), 616–626. https://doi.org/10.1016/j.jmii.2020.02.008

López Méndez, G. (2022). Regulación del gen leuO por ArcA, Fis y OmpR en Salmonella Typhi. http://riaa.uaem.mx:8080/xmlui/bitstream/handle/20.500.12055/2452/LOMGNR07T.pdf?sequence=1

Lou, L., Zhang, P., Piao, R., & Wang, Y. (2019). Salmonella Pathogenicity Island 1 (SPI-1) and Its Complex Regulatory Network. In Frontiers in Cellular and Infection Microbiology (Vol. 9). Frontiers Media S.A. https://doi.org/10.3389/fcimb.2019.00270

Luvsansharav, U. O., Vieira, A., Bennett, S., Huang, J., Healy, J. M., Hoekstra, R. M., Bruce, B. B., & Cole, D. (2020). Salmonella Serotypes: A Novel Measure of Association with Foodborne Transmission. Foodborne Pathogens and Disease, 17(2), 151–155. https://doi.org/10.1089/fpd.2019.2641

Lycke, N. (2012). Recent progress in mucosal vaccine development: Potential and limitations. In Nature Reviews Immunology (Vol. 12, Issue 8, pp. 592–605). https://doi.org/10.1038/nri3251

Manesh, A., Meltzer, E., Jin, C., Britto, C., Deodhar, D., Radha, S., Schwartz, E., & Rupali, P. (2021). Typhoid and paratyphoid fever: A clinical seminar. In Journal of Travel Medicine (Vol. 28, Issue 3). Oxford University Press. https://doi.org/10.1093/jtm/taab012

Márquez Marisol, Barrera Guadalupe, & Díaz-Larrea Jhoana. (2019). Mecanismos de Patogenicidad de Escherichia Coli y Salmonella SSP. Contactos, Revista de Educación En Ciencias e Ingeniería, 113, 4–17. https://contactos.izt.uam.mx/index.php/contactos/article/view/16/16

Martínez Álvarez Noelia. (2007). Virulencia, resistencia y elementos genéticos móviles en serotipos no prevalentes de Salmonella enterica. Universidad de Oviedo.

Mey, A. R., Gómez-Garzón, C., & Payne, S. M. (2021). Iron Transport and Metabolism in Escherichia, Shigella, and Salmonella. EcoSal Plus, 9(2). https://doi.org/10.1128/ecosalplus.esp-0034-2020

Mulvey, M. R., Boyd, D. A., Olson, A. B., Doublet, B., & Cloeckaert, A. (2006). The genetics of Salmonella genomic island 1. In Microbes and Infection (Vol. 8, Issue 7, pp. 1915–1922). https://doi.org/10.1016/j.micinf.2005.12.028

Nair, S., Patel, V., Hickey, T., Maguire, C., Greig, D. R., Lee, W., Godbole, G., Grant, K., & Chattaway, M. A. (2019). Real-time PCR assay for differentiation of typhoidal and nontyphoidal Salmonella. Journal of Clinical Microbiology, 57(8). https://doi.org/10.1128/JCM.00167-19

Ou, H., Wang, Y., Gao, J., Bai, J., Zhang, Q., Shi, L., Wang, X., & Wang, C. (2021). Rapid detection of salmonella based on loop-mediated isothermal amplification. Annals of Palliative Medicine, 10(6), 6850–6858. https://doi.org/10.21037/apm-21-1387

Parra, M., Durango, J., Máttar, S., & De Tema, R. (2002). MICROBIOLOGÍA, PATOGÉNESIS, EPIDEMIOLOGÍA, CLÍNICA Y DIAGNÓSTICO DE LAS INFECCIONES PRODUCIDAS POR Salmonella (Vol. 7, Issue 2).

Pfeifer, B. A., & Hill, A. (2021). Vaccine Delivery Technology Methods and Protocols Methods in Molecular Biology 2183. https://doi.org/https://doi.org/10.1007/978-1-0716-0795-4

Pornsukarom, S., Van Vliet, A. H. M., & Thakur, S. (2018). Whole genome sequencing analysis of multiple Salmonella serovars provides insights into phylogenetic relatedness, antimicrobial resistance, and virulence markers across humans, food animals and agriculture environmental sources. BMC Genomics, 19(1). https://doi.org/10.1186/s12864-018-5137-4

Quesada, A., Reginatto, G. A., Español, A. R., Colantonio, L. D., & Burrone, M. S. (2016). Antimicrobial resistance of Salmonella spp isolated animal food for human consumption. Revista Peruana de Medicina Experimental y Salud Publica, 33(1), 32–44. https://doi.org/10.17843/rpmesp.2016.331.1899

Quino, W., Caro-Castro, J., Mestanza, O., Hurtado, C. V., Zamudio, M. L., & Gavilan, R. G. (2020). Phylogenetic structure of Salmonella Enteritidis provides context for a foodborne outbreak in Peru. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-78808-y

Recio, M. D. O., Burgos, G. G. O., Muñoz, R. P., & Ayerbe, C. G. (2021). Fiebre paratifoidea dos meses después de un viaje a la India. In Revista Espanola de Quimioterapia (Vol. 34, Issue 2, pp. 167–168). Sociedad Espanola de Quiminoterapia. https://doi.org/10.37201/req/139.2020

Reitmeyer, J. C., Peterson, J. W., Wilson, K. J., Reitmeyer, J. C. (, Peterson, J. W., & Wilson, K. J. (1986). Salmonella cytotoxin : a component of the bacterial outer membrane. In Microbial Pathogenesis (Vol. 1).

Rortana, C., Nguyen-Viet, H., Tum, S., Unger, F., Boqvist, S., Dang-Xuan, S., Koam, S., Grace, D., Osbjer, K., Heng, T., Sarim, S., Phirum, O., Sophia, R., & Lindahl, J. F. (2021). Prevalence of salmonella spp. And staphylococcus aureus in chicken meat and pork from Cambodian markets. Pathogens, 10(5). https://doi.org/10.3390/pathogens10050556

Roy, P. K., Ha, A. J. W., Mizan, M. F. R., Hossain, M. I., Ashrafudoulla, M., Toushik, S. H., Nahar, S., Kim, Y. K., & Ha, S. Do. (2021). Effects of environmental conditions (temperature, pH, and glucose) on biofilm formation of Salmonella enterica serotype Kentucky and virulence gene expression. Poultry Science, 100(7). https://doi.org/10.1016/j.psj.2021.101209

Ryan, M. P., O’Dwyer, J., & Adley, C. C. (2017). Evaluation of the Complex Nomenclature of the Clinically and Veterinary Significant Pathogen Salmonella. In BioMed Research International (Vol. 2017). Hindawi Limited. https://doi.org/10.1155/2017/3782182

S. Sörqvist. (2003). Heat Resistance in Liquids of Enterococcus spp., Listeria spp., Escherichia coli, Yersinia enterocolitica, Salmonella spp. and Campylobacter spp. Acta Veterinaria Scandinavica, 44(1), 1–19.

Saldaña-Ahuactzi, Z., & Knodler, L. A. (2022). FoxR is an AraC-like transcriptional regulator of ferrioxamine uptake in Salmonella enterica. Molecular Microbiology, 118(4), 369–386. https://doi.org/10.1111/mmi.14970

Sampedro, F., Wells, S. J., Bender, J. B., & Hedberg, C. W. (2022). Retraction: Developing a risk management framework to improve public health outcomes by enumerating Salmonella in ground Turkey (Epidemiology and Infection (2019) 147 (E69) DOI: 10.1017/S095026881800328X). In Epidemiology and Infection (Vol. 150). Cambridge University Press. https://doi.org/10.1017/S0950268822000954

NTE INEN 2346 CARNE Y MENUDENCIAS COMESTIBLES DE ANIMALES DE ABASTO. REQUISITOS MEAT AND EATABLE VISCERA. REQUIREMENTS, INEN (2016).

Shigemura, H., Maeda, T., Nakayama, S., Ohishi, A., Carle, Y., Ookuma, E., Etoh, Y., Hirai, S., Matsui, M., Kimura, H., Sekizuka, T., Kuroda, M., Sera, N., Inoshima, Y., & Murakami, K. (2021). Transmission of extended-spectrum cephalosporin-resistant salmonella harboring a blacmy-2-carrying inca/c2 plasmid chromosomally integrated by isecp1 or is26 in layer breeding chains in Japan. Journal of Veterinary Medical Science, 83(9), 1345–1355. https://doi.org/10.1292/jvms.21-0085

Shimojima, Y., Shimojima, H., & Morita, Y. (2022). Survival of Campylobacter jejuni, Salmonella, and Listeria monocytogenes and Temperature Change in Low-Temperature-Longtime-Cooked Chicken Meat. Journal of Food Protection, 85(8), 1166–1171. https://doi.org/10.4315/JFP-22-114

Sperandeo, P., Martorana, A. M., & Polissi, A. (2017). Lipopolysaccharide biogenesis and transport at the outer membrane of Gram-negative bacteria. In Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids (Vol. 1862, Issue 11, pp. 1451–1460). Elsevier B.V. https://doi.org/10.1016/j.bbalip.2016.10.006

Srikumar, S., Kröger, C., Hébrard, M., Colgan, A., Owen, S. V., Sivasankaran, S. K., Cameron, A. D. S., Hokamp, K., & Hinton, J. C. D. (2015). RNA-seq Brings New Insights to the Intra-Macrophage Transcriptome of Salmonella Typhimurium. PLoS Pathogens, 11(11). https://doi.org/10.1371/journal.ppat.1005262

Tindall, B. J., Grimont, P. A. D., Garrity, G. M., & Euzéby, J. P. (2005). Nomenclature and taxonomy of the genus Salmonella. International Journal of Systematic and Evolutionary Microbiology, 55(1), 521–524. https://doi.org/10.1099/ijs.0.63580-0

Trawinski, H., Wendt, S., Lippmann, N., Heinitz, S., Von Braun, A., & Lübbert, C. (2020). Typhoid and paratyphoid fever. Zeitschrift Fur Gastroenterologie, 58(2), 160–170. https://doi.org/10.1055/a-1063-1945

Valdes Munayco, P. (2018). Evaluación de la contaminación por Salmonella sp. en huevos que se expenden en los mercados de chincha. Universidad Nacional San Luis Gonzaga.

Vásquez-Ampuero Juan Marco, & Tasayco-Alcántara Walter Richard. (2020). Presencia de patógenos en carne cruda de pollo en centros de expendio, Huánuco-Perú: una problemática en salud. Journal of the Selva Andina Research Society, 11(2), 130–141. http://scielo.org.bo/pdf/jsars/v11n2/v11n2_a08.pdf

Villacís, J. (2019). Análisis bioinformático de cuatro secuencias de genoma completo de Salmonella enterica de origen avícola.

Vosik, D., Tewari, D., Dettinger, L., M’Ikanatha, N. M., & Shariat, N. W. (2018). CRISPR Typing and Antibiotic Resistance Correlates with Polyphyletic Distribution in Human Isolates of Salmonella Kentucky. Foodborne Pathogens and Disease, 15(2), 101–108. https://doi.org/10.1089/fpd.2017.2298

Walker, J. M. (2020). Salmonella Methods and Protocols (Heide Schatten, Ed.; 3rd ed.). https://doi.org/https://doi.org/10.1007/978-1-0716-0791-6

Wang, M., Qazi, I. H., Wang, L., Zhou, G., & Han, H. (2020). Salmonella virulence and immune escape. In Microorganisms (Vol. 8, Issue 3). MDPI AG. https://doi.org/10.3390/microorganisms8030407

Webber, B., Borges, K. A., Furian, T. Q., Rizzo, N. N., Tondo, E. C., Dos Santos, L. R., Rodrigues, L. B., & Do Nascimento, V. P. (2019). Detection of virulence genes in salmonella heidelberg isolated from chicken carcasses. Revista Do Instituto de Medicina Tropical de Sao Paulo, 61. https://doi.org/10.1590/s1678-9946201961036

Wessels, K., Rip, D., & Gouws, P. (2021). Salmonella in chicken meat: Consumption, outbreaks, characteristics, current control methods and the potential of bacteriophage use. In Foods (Vol. 10, Issue 8). MDPI AG. https://doi.org/10.3390/foods10081742

Yamasaki, E., Matsuzawa, S., Takeuchi, K., Morimoto, Y., Ikeda, T., Okumura, K., & Kurazono, H. (2021). Rapid Serotyping of Salmonella Isolates Based on Single Nucleotide Polymorphism-Like Sequence Profiles of a Salmonella-Specific Gene. Foodborne Pathogens and Disease, 18(1), 31–40. https://doi.org/10.1089/fpd.2020.2823

Yang, Y. A., Lee, S., Zhao, J., Thompson, A. J., McBride, R., Tsogtbaatar, B., Paulson, J. C., Nussinov, R., Deng, L., & Song, J. (2018). In vivo tropism of Salmonella Typhi toxin to cells expressing a multiantennal glycan receptor. Nature Microbiology, 3(2), 155–163. https://doi.org/10.1038/s41564-017-0076-4

Yap, K. P., & Thong, K. L. (2017). Salmonella Typhi genomics: envisaging the future of typhoid eradication. In Tropical Medicine and International Health (Vol. 22, Issue 8, pp. 918–925). Blackwell Publishing Ltd. https://doi.org/10.1111/tmi.12899

Zeng, H., De Reu, K., Gabriël, S., Mattheus, W., De Zutter, L., & Rasschaert, G. (2021). Salmonella prevalence and persistence in industrialized poultry slaughterhouses. Poultry Science, 100(4). https://doi.org/10.1016/j.psj.2021.01.014

Zhao, X., Tang, X., Guo, N., An, Y., Chen, X., Shi, C., Wang, C., Li, Y., Li, S., Xu, H., Liu, M., Wang, Y., & Yu, L. (2018). Biochanin a Enhances the Defense Against Salmonella enterica Infection Through AMPK/ULKl/mTOR- Mediated Autophagy and Extracellular Traps and Reversing SPI-l-Dependent Macrophage (M) M2 Polarization. Frontiers in Cellular and Infection Microbiology, 8(SEP). https://doi.org/10.3389/fcimb.2018.00318

Descargas

Publicado

2023-07-02

Cómo citar

Cruz Quintana, S., Núñez Torres, O. ., Leiva Mora, M. ., & Díaz Sjostrom, P. . (2023). Salmonella spp como contaminante de la carne de pollo: una revisión . Revista Científica Arbitrada Multidisciplinaria PENTACIENCIAS, 5(5), 187–204. https://doi.org/10.59169/pentaciencias.v5i5.596

Número

Sección

Artículos de revisión